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Abstract 

The importance of interactive visualization in astronomical 

data exploration has been demonstrated by several 

applications such as CARTA [1], KARMA [4], SicerAstro 

[14] and 3DSlicer [10]. The next generation of radio 

astronomy telescopes, due to the increased size of the data 

being captured by them, will require new and improved 

software architectures and visualization techniques. This is 

required in order to maintain or improve upon 

contemporary applications’ interactive performance and 

user experience when dealing with large datasets. We have 

developed Voxualize, a web application with the goal of 

serving as a proof of concept for a 3D astronomical data 

visualization application which has a client-server 

architecture, where the computationally intensive tasks are 

handled by the backend (server) and the data exploration 

and interaction are handled by the frontend (client). 

Currently, there are no 3-dimensional astronomical data 

visualization applications which do this that are widely 

available to the public. In this paper, using our application, 

we explore various techniques and features which could 

potentially be included in such future applications, and 

discuss the benefits, drawbacks, and opportunities 

associated with each. 

CCS CONCEPTS 

• Computing methodologies ~ Computer graphics 

• Human-centered computing ~ Visualization  

• Human-centered computing ~ Interaction design 

 

1 Introduction 

The development of radio telescopes, such as the Square 

Kilometer Array [18] currently under construction in South 

Africa, has presented new opportunities in the field of radio 

astronomy. The quantity and quality of the data collected 

by these telescopes requires novel techniques for analysis 

and interpretation in order to extract the maximum amount 

of useful information from it. This data comes in the form 

of data “cubes”, meaning it is three dimensional (two 

positional and one spectral) and can be visualized as a stack 

of 2D images captured along the radiofrequency      

spectrum [5]. Analysis of astronomical data at different 

frequencies allows astronomers to detect certain 

astronomical phenomena which would otherwise be 

undetectable. For example, neutral hydrogen (H1) surveys 

at the 21-cm sub infra-red emission-line can be used to 

infer important information such as the star formation rate 

[13] and cold gas accretion [16] of galaxies. 

 

It has recently been pointed out that there is a lack of an 

application that can deal with large astronomical data cubes 

in more than two dimensions [5][11]. In this paper, what is 

meant by a “large” data cube or data set is one which has a 

memory size which makes it too large for it to be stored or 

rendered practically on most personal computers (PCs), i.e. 

approximately greater than 100 GBs. Currently, there are 

only a few tools which provide 3D rendering for 

astronomical data and only for a small subset of a larger 

data cube (see Section 4), and these applications require 

that the data be stored and rendered on the user’s PC with 

the users graphical processing unit (GPU). Other 

applications (see Section 4.3 CARTA) provide server-side 

rendering and data storage, however only allow the user to 

step through the data cube viewing one rendered 2D image 

at a time until the desired frequency or collection of 

frequencies is found. This process is inefficient since it 

requires the user to perform many interactions with the data 

and attempt to construct a mental 3D visualization from a 

collection of 2D images. Although this technique is useful 

in certain cases, the addition of a 3D representation of this 

data using volumetric rendering along with tools which 

would provide interaction and flexibility for cubes larger 

than what can be stored on a personal computer (PC), 

would be of great use to the next and current generation of 

radio astronomers [5]. 

 

2. Requirement Analysis and Design 

Throughout the course of this project, we have been 

working alongside the lead engineer - Dr. Angus Comrie - 

of CARTA (see Section 4.3). The developers of CARTA 

have particular interest in this research area, as they are 

considering integrating a feature which would allow for the 



  

 

 

 

visualization of and interaction with large data cubes in 3D 

in a future release of their application. This could be 

considered the primary motive behind this project, and 

working alongside him, we have the following aims: 

 

Aim: To determine whether it is possible to develop an 

astronomical data visualization application which allows 

the user to interact with and visualize data cubes which are 

too large to be stored or rendered on a single PC in an 

intuitive, lag-free manner. Also, to determine what 

architectural and design decisions should be made for such 

an application. 

Hypothesis: Development of such an application is 

possible. It would have to be built with a client-server 

architecture where the computationally intensive tasks are 

handled by the server, and the data exploration and 

interaction are handled by the client. The server would 

handle tasks such as rendering of high-resolution images of 

volumetric renders and the generation of level-of-detail 

(LOD) down-samples of the full cube. The client would be 

responsible for receiving input from the user, rendering the 

LOD model and displaying the high-resolution renders. A 

robust communication protocol would be required between 

the client and the server and allow the server - upon 

requests from the client - to stream high quality renders of 

what the user is currently viewing of the LOD model. By 

employing such a hybrid-rendering technique, such an 

application would find a balance between interactive 

performance and image quality of the visualizations. 

 

The resulting application should be developed with data 

structures and algorithms which are as efficient and 

scalable as possible, which would be required in future 

real-world and full-scale implementations of our 

application. 

 

3. Background 

This section presents background information on some of 

the techniques adopted and explored in our application. 

 

3.1 Volumetric Rendering 

Volumetric rendering is a technique used in computer 

graphics to visualize a 3D discretely sampled data set on a 

2D display. The data usually comes in the form of a “cube” 

or stack of 2D images of the same dimensions (i.e. the same 

amount of pixels), with each image on the stack usually 

acquired in a regular pattern (e.g. one every unit of time or 

distance). Previous approaches to visualizing 3D data 

utilize computer graphics techniques which attempt to 

reduce the volume array to a set of 2D geometric primitives 

(usually triangles) linked together in a mesh in order to 

approximate the surfaces of objects contained in the data. 

This technique, known as texture mapping (or texture-

based rendering) [6], is inefficient when rendering objects 

which have a branching structure, especially when there is 

a high density of branching relative to the overall size of 

the object. This is because only the surfaces of objects are 

rendered when using this technique and branching 

structures rapidly increase the surface area of objects, 

making them more computationally intensive to render. 

Animators and computer game developers have had to 

circumnavigate this problem either by using various 

techniques to reduce the complexity of the object (e.g. 

multi-resolution rendering [15]) or exclude them 

altogether. Thus, texture-based rendering is undesirable 

when high detail is required or branching objects are being 

rendered. 

 

Texture-based rendering also proves inadequate when 

users require the insides of objects to be rendered, since this 

technique only renders the surfaces of objects and excludes 

all detail found within. This is most notably seen in 

scientific visualization when users wish to interact with, 

move inside, cut or disassemble objects with high 

precision. For example, a medical professional may wish to 

visualize the data acquired from an MRI scan in a 3D 

interactive environment to view the inside of a patient’s 

body [20]. Volumetric rendering aims to solve these 

problems by generating images of 3D data without 

explicitly extracting geometric surfaces from the data [12]. 

This technique directly renders each volumetric element 

(or voxel), which can be thought of as a 3D pixel, where 

the values associated with each voxel are calculated by 

sampling the immediate area surrounding it. Each voxel 

has an opacity and colour value, which is usually calculated 

by a RGBA transfer function. This function maps a 

numerical value to a voxel’s colour and opacity. 

 

3.2 Volume Ray Casting 

Volume ray casting, also referred to as ray marching, is the 

technique utilized by volumetric rendering whereby a 2D 

image is created from a 3D dataset. In this technique, for 

each pixel of the final image, a viewing ray is cast through 

the volume. Along its path, samples of opacity and the 

colour of voxels are recorded and accumulated at equal 

intervals. In certain cases, the sampling point might occur 

between voxels, in which case it is necessary to interpolate 

values from the surrounding voxels. After all sampling 

points have been shaded (i.e. coloured and lit), they are 

composited along the viewing ray, and the resulting opacity 

and colour value assigned to the corresponding pixel. This 



 

process is completed for each pixel on the screen until the 

final image is produced. 

 

Due to the parallel nature of this technique, since each 

viewing ray can be computed in parallel, modern GPUs are 

best suited to the task of volumetric rendering. Scalability 

into the future is also resolved in this way as more GPUs 

can simply be added to a cluster as the size of the data cubes 

increase. 

 

4 Related Work 

Many astronomical data visualization tools exist, however 

in this paper only those which are open source, publicly 

available and continuously maintained by developers are 

discussed. This review is required in order to avoid 

duplication of software and features which have already 

been developed and are in use. 

 

4.1 KARMA 

Karma [4] is a general-purpose programmer's toolkit and is 

made up of KarmaLib, a structured library and application 

programming interface (API), and several modules or 

applications to perform specific tasks. Karma is a 

serverless desktop application. Hence, all input data cubes 

must be stored on the host machine. This will often prevent 

users from being able to visualize large data cubes when 

running the application on their workstations due to lack of 

storage capacity. Karma’s rendering is done by the CPU as 

opposed to a graphical processing unit (GPU). This, 

together with the lack of memory capacity of most 

commodity PCs, imposes significant constraints on the size 

and resolution of data which can be visualized using 

Karma. 

 

There is also the requirement that data cubes used for 

volumetric rendering in Karma must have bit values in the 

range of -127 to 127. This is a severe limitation for 

astronomers as images often contain very bright sources 

which would be stored as bit values higher than 127. For 

these data cubes to be rendered, they would have to be 

scaled to fit into this range which would result in a 

significant loss of information. 

 

The main visualization features supported by the library 

include: 

• Volume rendering of data cubes (see Section 3). 

• Play movies of data cubes - allowing the user to 

step through frames of a data cube. E.g., a cube 

where each step in the movie corresponds to a 

different frequency.  

• Inspecting multiple images and cubes at the same 

time - allowing the user to compare several 

datasets at the same time and apply different 

display settings to each. 

• Slice a cube - used to display three orthogonal 

slices through the cube where each slice is along 

one of the principle planes (X, Y and Z). 

• Superimposing images. 

• Interactive position-velocity slices - allowing users 

to use a two-dimensional image to define a slice 

through a three-dimensional data cube. 

• Interactive co-ordinate placement - allowing users 

to quickly place a co-ordinate system onto images 

which do not have one. 

• Rectangular to polar gridding of images - which 

allows the user to easily alternate the co-ordinate 

grid between polar and rectangular.  

 

 
Figure 1: The user interfaces (UI) of the applications discussed in 

Related Works. Top Left: The UI of SlicerAstro. Top Right: The UI 

of SAOImage DS9. Bottom Left: The UI of CARTA with labels of 

widgets superimposed. Bottom Right: The UI of Karma displaying 

2D rendered image superimposed with a contour lines for intensity 

values. 

 

4.2 SAOImage DS9 

SAOIMage DS9 [8] is another widely used astronomical 

data imaging and visualization application. As with Karma, 

is a desktop application and all rendering is done on the 

client’s CPU. Hence it imposes similar constraints on the 

cube size and resolution depending on the user’s CPU(s) 

performance.  

 

It provides access to web-based archive servers such as the 

Mikulski Archive for Space Telescopes (MAST), SkyView  



  

 

 

 

and many more through FTP and HTTP. All data cubes 

retrieved in this manner are required to be entirely copied 

into the memory of the user’s machine before rendering can 

take place.  

 

DS9 provides support for volumetric rendering. However, 

as already mentioned, it requires the rendering to be done 

on the workstation’s CPU and provides very limited 

support for the editing of the opacity and colour transfer 

functions. Another notable feature supported by DS9 is 

inter-process communication using the Simple Application 

Messaging Protocol (SAMP) [19]. This is a standard for the 

exchange of data between participating client applications 

and is used by many applications dealing with astronomical 

data. Future applications should consider implementing 

SAMP such that the data produced by them can be inputted 

into other astronomical data application and vice versa. 

 

4.3 CARTA 

The Cube Analysis and Rendering Tool for Astronomy 

(CARTA) [1] is a web application used for the analysis and 

visualization of astronomical data. Its mission is to provide 

usability and scalability into the future as the size and detail 

of radio images increases as more advanced radio 

telescopes are built. It plans to achieve this through 

exploiting modern web technologies, computing 

parallelization and modern GPUs.  

 

CARTA adopts a client-server. It does this to allow users 

to visualize data cubes too large to be stored on PCs. It 

currently does not support volumetric rendering and only 

allows visualization of 3D data cubes through 2D rendered 

slices. However, CARTA supports several features which 

are noteworthy: 

• Tiled rendering – the separation of a graphical 

image into a regular grid so that each section of the 

grid (or tile) can be rendered independently of the 

others and at the same time (in parallel). 

• Cursor information – displaying information about 

a pixel where the cursor is positioned at the top of 

the screen.  

• Region of Interest (ROI) – allowing the user to 

draw or select a specific region in the image which 

can then be separated for further analysis. 

 

4.4 SlicerAstro (plugin for 3DSlicer) 

3DSlicer [10] is an application for the analysis and 

visualization of medical images. It is supported by multiple 

operating systems including Windows, MacOSX and 

Linux, supports both CPU and GPU rendering, supports 3D 

volumetric rendering and is extensible to allow the 

development and use of plugin applications and algorithms.  

 

SlicerAstro [14] is one such plugin, which includes several 

capabilities that are particular to astronomical applications, 

such as: 

• Support for the Flexible Image Transport System 

(FITS) file format, which is the most widely used 

file format in astronomy. 

• Astronomical co-ordinate systems. 

• Interactive 3-D modeling (rotation, zoom, etc.). 

• Coupled 1-D/2-D/3-D visualization with linked 

views. 

• Support for the SAMP protocol. 

• Generation of flux density profiles and histograms 

of the voxel intensities.  

 

3DSlicer (and hence SlicerAstro) is a desktop application, 

and all rendering is done using the user’s CPU and GPU. 

Punzo et al. reported that SlicerAstro provides interactive 

performance when rendering data-cubes of dimensions up 

to 107  (≈40mb) voxels and very fast performance (<3.5 

sec) for larger ones up to 108 voxels (≈400mb) [14]. 

SlicerAstro also makes use of a several smoothing 

functions, most notably of which is the intensity-driven 

gradient filter. This filter preserves the detailed structure of 

the signal while smoothing the faint part of it, improving 

visualization and feature detection. An example of this 

shown in top left of Figure 1. 

 

5 System Design and Implementation 

This section outlines the overall architecture, programming 

languages, external libraries, and functionality of the 

application. The application was chosen to be developed 

with a client-server architecture where the rendering is 

done server side. The reasons for this are related to the 

difficulty in rendering and storing large data cubes on a PC, 

and the transferal of them over a network. For example, the 

typical survey conducted by MeerKAT will have 8K × 8K 

bits spatial resolution and up to 32K spectral resolution [7], 

which would give a typical size of 8K × 8K × 32K × 4 

(assuming 32-bit floats) ≈ 8 TB at full spectral and spatial 

resolution.  

 

Cleary this is too large to be stored on most PCs hard drives 

which usually have a capacity of less than or equal to 1 TB. 

A client-server architecture would allow these large data 

cubes to be stored in one location only and have clients 

accessing the data cubes remotely. Many PCs do not have 

access to a GPU, and those that do often do not have the 

processing power to render cubes of the aforementioned  



 

size. Rendering the data cubes on a server which had access 

to powerful GPUs or clusters of them, would allow much 

larger cubes to be visualized on PCs than would otherwise 

be possible. The final reason why a client-server 

architecture is used, is due to the amount of time it would 

take to transfer such large cubes over a network. This 

would be required if the rendering where to be done locally 

as opposed to remotely, as the entire data cube would have 

to be copied into memory of the local workstation.  For 

example, a 100 Gb data cube on a 1mb/s download speed 

would take 27.8 hours to download and alongside the time 

constraint, may have significant financial implications if 

paying for the network data. 

 

This paper mainly focuses on the server’s design and 

implementation since another member of the project team 

was responsible for the frontend. However, the frontend 

and communication protocol shall be discussed to the 

extent that it is necessary in order that specific design 

decisions about the server makes sense in the full context 

of the application. A general overview of how the 

application works follows: 

 

The server was developed in C++, the frontend in 

TypeScript and making significant use of React.js for the 

user interface and UI components, and Google’s gRPC as 

the communications protocol between the two. The 

application takes a hybrid-rendering approach where the 

frontend renders and provides interaction and exploration 

with a LOD model in a web browser and continually sends 

different types of requests to the server depending on input 

from the user. The server then handles the computationally 

intensive tasks such as rendering of high-resolution images, 

or LOD model generation, which are then streamed to the 

user and then used to update the display. The user is able to 

specify the total memory size of the LOD model being 

rendered in their browser and the server is responsible for 

meeting this requirement when generating LOD models. 

The updating of the display with high-resolution renders 

and new LOD models is intended to be as seamless as 

possible. This approach has been taken to provide a balance 

between responsive interaction and visualization quality. 

 

Figure 2 shows a component diagram of Voxualize. It 

should be referred to throughout this section such that each 

component discussed can be seen in the full context of the 

application. 

 

5.1 Google’s Remote Procedure Calls (gRPC) 

gRPC was chosen as the communication protocol between 

the TypeScript frontend and C++ backend. gRPC is an 

open-source remote procedure call system initially 

developed at Google in 2015. It uses protocol buffers as the 

interface description language, HTTP/2 for transport, and 

provides the following features relevant to our application: 

bidirectional streaming, flow control, remote procedure 

call (RPC) cancellations and timeouts. gRPC’s simple 

interface description language allows for rapid 

development as requests from the frontend to the backend 

and the streaming of data from the backend to the frontend 

are implemented from the perspective of the developer as 

though they are mere function calls which are language 

independent. This prevents the manual construction of 

HTTP requests or the setup of web sockets for data 

streaming. Kiraly et al. reported that gRPC produced the 

best performance when both serializing data and streaming 

it when compared to other RPC systems, and that 

specifically its C++ implementation proved faster when 

compared to other languages [17].  

 

Figure 3 shows a sequence diagram of the communication 

exchanges between the client and the server. The RPCs 

usually follow the format of a request from the client which 

contains information required by the server to generate the 

data object which is then streamed back to the client in the 

response. A description of the main RPCs follows: 

• ListFiles: The request is empty, as this is the 

initializing communication between the client and 

the server. The response is the list of data files 

currently stored on the server, one of which can 

then be selected by the user.  

Figure 2: A component diagram of Voxualize, giving an overview of 

the architecture and the usages of 3rd party libraries. 

 



  

 

 

 

• GetFile: This allows the client to specify which file 

they wish to visualize. 

• GetHQRender: When the user stops interacting 

with the LOD model for a small period of time 

(≈200ms), this RPC is made containing 

information about the state of the render on the 

frontend, such as the cameras position, focal point, 

and transfer function settings, and the server then 

generates the corresponding high-resolution image 

and streams it to the frontend, which then updates 

the display. 

• GetROILODModel: This RPC is made when the 

cropping planes have been adjusted on the 

frontend, or a new memory size of the LOD model 

has been requested. The server then generates a 

new LOD model based on the request and streams 

it to the frontend, where it is then displayed.  

 

5.1 Backend (server) 

The future applications of which Voxualize is intended to 

serve as a proof of concept for, will be required to store and 

render extremely large quantities of data as efficiently as 

possible. When working with such large data sets, it is 

imperative that memory management is prioritized and that 

no unnecessary memory copies are executed. In order to 

achieve this, C++ was chosen as the server’s language of 

implementation since it provides memory management, is 

computationally efficient and is widely utilized in 

computer graphics applications, scientific or otherwise, and 

in web applications which require efficient servers. This 

would make future integration with other astronomical 

visualization applications seamless and would increase the 

impact that out project may have on the field. As discussed 

in the Introduction, one of the primary motives for this 

project was to build a proof of concept of an application or 

feature which could be integrated into the CARTA 

platform in the future. This further motivates our choice of 

languages and frameworks, as they are utilized in the 

CARTA platform (see Section 4.3). 

 

The server is responsible for storing the data files which are 

to be visualized, handling requests from the client, 

generating LOD models and high-resolution renders of the 

full model, and streaming these data objects to the client. 

At the time of the writing of this paper, Voxualize only 

supports raw floats as input. It was planned at the beginning 

of the project that support for the Flexible Image Transport 

Standard (FITS) file format would be implemented, 

however, due to time constraints these plans were not 

materialized. FITS is a format widely used in astronomy 

and would be essential in any astronomical visualization 

software, however it is not essential to the aims of our 

project (see Aims in Section 2). 

 

5.1.1 LOD Model Generation 

How the LOD models are generated depends on the 

parameters passed in the request from the client. After a file 

is selected, when the “Render” button is selected, the LOD 

model corresponding to the entire cube is generated. A 

slider in the bottom left of the screen is used to select the 

target memory size of the LOD model, which will be 

stored, rendered and interacted with in the client’s browser. 

The values range from 1mb to 100mb and the value can be 

adjusted to meet the memory and graphical constraints of 

the client’s PC such that the visualization maintains 

interactive performance. The voxel values of the LOD 

model are calculated by sampling the corresponding area 

around the voxel in the full cube, with the magnitude of the 

area sampled directly proportional to the reduction factor 

from the full model to the LOD model. To illustrate this 

point by example, a target LOD size of 5x5x5 with a full 

cube of 10x10x10 voxels, would have each voxel 

calculated by sampling and area of 2x2x2 voxels from the 

full cube. There were two functions used to aggregate the 

voxels from the sampled area: the mean and the maximum 

value. The maximum is the default setting as astronomical 

surveys tend to produce cubes which are empty for the most 

part and have small areas of very “high” or “bright” voxels 

dispersed around the cube. If a mean sapling function is 

used in these cases, the bright voxels will be aggregated 

with low values surrounding it, and a significant amount of 

information will be lost. 

Figure 3: A sequence diagram showing the main RPCs 

between the client and the server. 



 

The user is able to specify the cropping planes of the data 

cube (see Section 5.2). After the cropping planes have been 

changed, the user can then request a new LOD model. This 

request will then sample a new LOD model corresponding 

to the volume resulting from the cropping planes settings 

and will have a memory size equal to the value set on the 

slider at the time of the request. This allows a user to zoom 

into smaller and smaller regions, with each new request 

rendering the selected LOD model in higher and higher 

resolution, whilst sticking to the memory constraints of the 

client’s PC.  

 

5.1.2 Visualization Toolkit (VTK) 

VTK [21] is open source software for manipulating and 

displaying scientific data. It is platform agnostic and is 

usable in C++ and TypeScript. It was the library of choice 

for the rendering of the data and the interaction with it – 

through VTK.js in the browser. It is used in many 

astronomical visualization applications. The server makes 

use of VTK’s compatibility with EGL in order to perform 

offscreen rendering of high-resolution images (see Section 

5.1.3). EGL [9] is an interface between Khronos rendering 

APIs (such as OpenGL [22]) and the underlying native 

platform windowing system. The acronym EGL is an 

initialism, which starting from EGL version 1.2 refers to 

Khronos Native Platform Graphics Interface. In our 

context, it allows us to performing rendering where the 

resulting image is copied to a back (offscreen) buffer rather 

than a front (onscreen) buffer. This is essential as it 

emulates a real-world implementation of our application 

where the server would most likely not be running an X 

server.  

 

5.1.3 High-resolution Images 

Whenever the user stops interacting with the LOD model 

on the frontend, selects a new RGBA function value with 

the slider or changes the cropping planes, a request for a 

high-resolution image of what the user is currently viewing 

is sent to the backend. By this time, the server will already 

have an EGL render of the full data cube set up but paused 

(the setup of the EGL render happens when the user selects 

a file). Whenever the server receives such a request, it 

retrieves the necessary information from the request sent 

by the client, such as the camera position, focal point, 

distance from the focal point, cropping planes coordinates 

and RGBA values. Using this information, it updates the 

necessary VTK objects with the new values, starts the 

render, captures the resulting image data, stops the render 

and streams the resulting image after encoding it to the 

client.  

 

5.1.4 Encoding and compression 

Zfp [23] is a floating-point compression library which has 

a reported CPU throughput of 2 GB/s per CPU core and 

150 GB/s parallel throughput on an NVIDIA Volta GPU. 

It is reported to provide 1.5-4 times data reduction for 

lossless compression, and up to 100 times data reduction 

when using lossy compression. At the time of writing, there 

exists a working implementation of the server where all 

LOD models are compressed using zfp prior to them being 

streamed to the client. However, a zfp decompressor on the 

frontend has not yet been implemented. Having the LOD 

models compressed using zfp prior to streaming greatly 

reduces the strain on the network and may be desirable for 

user’s with low bandwidth internet access. 

 

The high-resolution images discussed in Section 5.1.3 are 

encoded using FFmpeg [3]. FFmpeg is a free and open-

source software project consisting of a large suite of 

libraries and programs for handling video, audio, and other 

multimedia files and streams. The main library used is 

libavcodec which is an audio and video codec library used 

for encoding and decoding video and audio data. FFMPEG 

executes its encoding on the CPU as opposed to the GPU 

and hence is not as scalable as other solutions such as 

Nvidia’s NVENC, which was initially intended to be 

implemented in the application, however, due to specific 

hardware constraints – the PC being used for development 

had a GPU which is incompatible with NVENC – we were 

unable to include GPU accelerated encoding. However, it 

is unlikely that this would lead to a noticeable decrease in 

performance, as the resulting high-resolution image would 

usually be less than 1mb in size, and the time taken to 

encode an image of such small memory size on the GPU vs 

CPU would be negligible (in terms of user experience). 

This is due to the shorter time taken to encode the image on 

the GPU being offset by the time it would take to copy the 

Figure 4. Left: A LOD model. Right: A high-resolution image 

corresponding to the view of the LOD model on the left. It has been 

rendered on the server, streamed to the client and displayed over 

the model on the left to the user. When the user interacts, the view 

will return to the LOD model on the left. 

 



  

 

 

 

image to the GPU’s buffer. When encoding the image with 

FFMPEG, this copy is avoided. 

5.2 Frontend (client) 

(In this section, the letters A – I refer to the highlighted UI 

components found in Figure 5) 

 

The frontend is responsible for the UI and data exploration. 

It is written in TypeScript and relies on React for the UI 

components. The title bar contains a drop-down menu (A) 

which lists the files on the server and allows the user to 

select one. After one is selected the user can then click the 

“Render” button (B). When this is done, a GetFile RPC is 

executed (see Section 5.1). This is when the server 

generates the LOD model corresponding to the full cube, 

streams it back to the client and sets up the EGL render of 

the full cube. The screenshot in Figure 5 is taken just after 

these actions are taken. 

 

The user can then interact with the cube in the following 

ways: 

• Click and drag – This cause the cube to rotate. 

• Zoom in/out – The user can zoom in or out using a 

mouse scroller. 

The user can also: 

• Switch between the mean and the maximum 

sampling methods (C) that the server will use to 

generate the LOD models (see Section 5.1.1).  

• Change the cropping planes using the sliders (E) or 

graphically using the corners of the box (D). 

• Change the RGB transfer function values using 

sliders (F). 

• Change the memory size of the LOD model (G). 

• Click the “Request new model” button (H), which 

will take into account the cropping planes currently 

set and the target memory size and request a new 

LOD model based on those values. 

• Reset the model being displayed to the most 

recently used LOD model corresponding to the full 

cube (I). 

 

The updating of the display with the high-resolution image 

is intended to be as seamless as possible. The user is still 

able to interact with the cube while the request is being 

processed, and the display will only be updated if the 

image being received corresponds to the current view of 

the user.  

 

6 Experimental Design 

Although this project was more focused on the design and 

implementation of an application and the user experience 

associated with it, a few performance tests were conducted 

on several key functions on the server. A comparison of the 

time taken to execute them may allow us to extrapolate 

useful information about the limitations of such a real-

world implementation of our application, and the hardware 

requirements as the size of the data cubes increases. It 

would also likely reveal any functions which are 

bottlenecks of the system, and for which alternative 

solutions or implementations would need to be explored. 

 

The PC used to conduct the experiments had an Intel Core 

i7 CPU, and a NVIDIA GeForce MX250 GPU. Three 

different file sizes were used as input to these various 

functions (42 mb, 195 mb and 595 mb). The time taken to 

execute them was measured using the C++ utilities library 

std::chrono::high_resolution_clock. Each function was 

executed 20 times for each input and the average execution 

time was recorded. The following functions were tested: 

the time to generate a 10 mb LOD model using the mean 

and max sampling method (see Figure 6), the time taken to 

render and capture a full resolution image using VTK (see 

Figure 7) and the time taken to encode this resulting image 

using FFmpeg. “Full resolution” in this context means a 

volumetric render where the full data cube is being 

rendered. The actual resolution of the resulting image is 

automatically set to the window size of the display on the 

frontend. In the case of these tests, the window size (and 

image resolution) was 1385x500 pixels.  

 

7 Results and Discussion 

The application outlined in Section 5 was implemented 

successfully. The user is able to interact with LOD models 

in a web browser, while high-resolution images of what the 

user is viewing continually update the display whenever 

they stop interacting for a short period of time. The 

transition between the view of the LOD model and the 

high-resolution image is seamless, and the application is, 

Figure 5: The UI of Voxualize. This screenshot was taken just after 

a file was selected and the “Render” button pressed. 



 

for the most part, bug-free and intuitive to use. The sliders 

for the RGB transfer function are responsive, and the high-

resolution images are generated with the same RGB 

transfer function values as those on the frontend. Similarly, 

the cropping planes sliders effect the visualization 

immediately and any changes are reflected in the high-

resolution images being generated on the server.   

 

7.1 Experiment Results 

 
Figure 6: The time taken to generate a 10 mb LOD model from data 

cubes of 3 different sizes. Both the “Mean” and “Max” sampling 

methods were used. 

 

The results of the experiments discussed in Section 6 are 

presented above. Figure 6 shows the time taken to generate 

a 10 mb LOD model from input data cubes of various sizes. 

The Mean sampling method appeared to generate LOD 

models faster than the Max, given the same input data cube 

and target LOD model memory size. This is most likely due 

to the Max sampling method requiring a boolean if-

statement check for every value in the input data cube in 

order to determine the maximum voxel value in each sub-

volume. It is important to note that these sampling 

algorithms were implemented sequentially, even though 

they are both fully parallelizable. There were several 

reasons why this was done. The generation of the LOD 

model on the server is unlikely to occur often while a user 

is visualizing and interacting with a data cube. LOD models 

are only generated when the user starts the visualization or 

they request a new LOD model after changing the cropping 

planes or target memory size. After the LOD model is 

generated and streamed to the client, the user will most 

likely spend the majority of the time interacting with the 

same LOD model and viewing the high-resolution images 

which continually update the display.  

An alternative implementation would have been to utilize 

hardware accelerated scheduling through executing the 

algorithms in parallel on the GPU. The main problem with 

this solution is that it would require a copy of the full data 

cube into the GPUs buffer, which would likely offset any 

reduction in execution time as a result of the parallelized 

execution on the GPU. A more practical solution would be 

to designate portions of the data cube to several threads 

which are executed on the CPU. This would prevent 

unnecessary copies and likely lead to a significant decrease 

in execution time for larger cubes. As seen in Figure 6, the 

time to generate the LOD model from a data cube of 565 

mb was almost 8 seconds when using the Max sampling 

method. This already is a borderline unacceptable amount 

of time, and a future application would ideally be able to 

handle data cubes much larger than this. Due to the time 

constraints of the project, we were unable to implement this 

feature, but note that it is essential for future full-scale 

applications which wish to support cubes larger than 500 

mb. 

 
Figure 7: The time taken to render a requested high-resolution 

image using VTK, and copy it from the GPUs buffer into main 

memory. 

 

Figure 7 shows the time taken for the server to render and 

capture high-resolution images using VTK. As mentioned 

in Section 6, the full data cubes were volumetrically 

rendered by VTK, and the resulting images of 1385x500 

pixels were captured. The server took on average two 

seconds to render a data cube of 565 mb, which had access 

to a single GPU. We believe this to be an acceptable 

amount of time considering the hardware constraints. A 

server would be able to improve upon this solution by 

simply installing more powerful GPUs, or by combining 

several into a cluster.  

 

The time taken to encode the images is not included in a 

chart since it took the same amount of time - 0.055 seconds 

- regardless of the input size of the data cube. This was to 

be expected, as the image captured by VTK and inputted 

into the FFmpeg encoding was always the same size. Since 

Voxualize is intended to serve as a proof of concept for a 

web application, it is unlikely that hardware accelerated 

encoding of these images is necessary to implement, as the 



  

 

 

 

image size will be set to match the window size of the 

client’s display. Assuming the web application was being 

accessed on a PC or mobile device, it is unlikely that the 

target image would be much greater than 1385x500 pixels. 

However, in order to maximize performance and minimize 

the latency of the GetHQRender rpc’s (see Section 5.1), 

future implementation may wish to explore the possibility 

of implementing hardware accelerated encoding.  

 

7.2 Large Cube Compatibility 

One design decision which may lead to issues when 

attempting to scale our application is the rendering of the 

LOD model corresponding to the full cube after a file is 

selected and the “Render” button is pressed. If the user had 

very large cubes to choose from, which is what is intended 

for future implementations, the generation of the 

corresponding LOD models would likely require that they 

be down sampled to such an extent that the resulting 

visualization would become meaningless. In such cases, a 

mechanism is required in order to prevent this from 

happening when the visualization is initialized. One 

solution could be to allow the server to select a default 

cropping region of the cube and begin the visualization 

with that. The application could then allow users to switch 

from one region to an adjacent one or expand and edit the 

existing cropping regions to “move through” the full cube. 

Additional meta-information could be provided to the user, 

allowing them to determine which segment of the cube they 

are seeing. Or the application could provide the user with 

meta-information first and allow them to select a cropping 

region before the visualization has even begun. 

 

If such an application did not implement a parallel version 

of the LOD model generation algorithms discussed in 

Section 5.1.1, it would be desirable to minimize execution 

of these algorithms with large data cubes as input. This 

further motivates an improvement on the design decision to 

generate the LOD model corresponding to the full data 

cube when the visualization is initialized. 

 

8 Limitations 

The current implementation of Voxualize contains two key 

limitation which we were unable to resolve due to time 

constraints. When the high-resolution image updates the 

display, it occasionally appears marginally lower than the 

prior view of the LOD model. This offset is minor, and on 

occasions is unnoticeable. We were unable to determine 

what causes this discrepancy but are certain it would be 

straight forward to resolve and necessary to do so. 

 

The second limitation is a feature which we were unable to 

implement also due to time constraints. It is the absence of 

the ability for the user to zoom out from one cropping 

region to a larger one. Currently, Voxualize only allows the 

user to generate a new LOD model from a smaller cropping 

region, or to reset the LOD model to the cropping region of 

the full cube rather than a custom cropping region. This 

feature is of course essential to any real-world 

implementation of our application, however it is not 

essential in achieving the research aims of this project. 

 

9 Conclusions and Future Work 

Our proof of concept application, Voxualize, allows users 

to interact with 3-dimensional astronomical data cubes in 

an intuitive and lag-free manner which would otherwise be 

too large to be stored or rendered on a commodity PC or 

transported over a local network in an acceptable amount 

of time. It achieves this through a hybrid-rendering 

technique vastly unexplored in the widely available 3-

dimensional astronomical data visualization applications, 

by employing a client-server architecture where the 

computationally expensive tasks are handled by the server 

and the data exploration and interaction are handled by the 

client. We conclude that future astronomical visualization 

applications, which wish to allow the visualization of and 

interaction with the large astronomical data cubes currently 

being produced by modern radio astronomy telescopes in 

3D, should employ a client-server architecture and a 

similar hybrid-rendering technique.  

There are numerous avenues that can be taken for future 

work. In our opinion, the next logical step would be to build 

upon our application and explore alternative visualization 

techniques while adopting a client-server architecture and 

our hybrid-rendering approach. The findings of this 

research could be used to guide future applications’ 

development. A number of features which we were hoping 

to include but were unable to due to time constraints were: 

compatibility with FITS file format, blinking between 

images and transfer function values, hardware accelerated 

encoding of images on the GPU, and tiled rendering both 

of the high-resolution images and volumetric tiled 

rendering of the LOD models. 
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