

CS/IT Honours

Final Paper 2020

Title: Server-Side Rendering of Large Astronomical Data Cubes

Author: Jonathan Weideman

Project Abbreviation: CAVoluR

Supervisor(s): Prof. Rob Simmonds, Dr Angus Comrie

Category Min Max Chosen

Requirement Analysis and Design 0 20 10

Theoretical Analysis 0 25 0

Experiment Design and Execution 0 20 5

System Development and Implementation 0 20 20

Results, Findings and Conclusions 10 20 15

Aim Formulation and Background Work 10 15 10

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10 0

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

Server-Side Rendering of Large

Astronomical Data Cubes

Jonathan Weideman

Department of Computer Science

University of Cape Town

South Africa

September 2020

Abstract

The importance of interactive visualization in astronomical

data exploration has been demonstrated by several

applications such as CARTA [1], KARMA [4], SicerAstro

[14] and 3DSlicer [10]. The next generation of radio

astronomy telescopes, due to the increased size of the data

being captured by them, will require new and improved

software architectures and visualization techniques. This is

required in order to maintain or improve upon

contemporary applications’ interactive performance and

user experience when dealing with large datasets. We have

developed Voxualize, a web application with the goal of

serving as a proof of concept for a 3D astronomical data

visualization application which has a client-server

architecture, where the computationally intensive tasks are

handled by the backend (server) and the data exploration

and interaction are handled by the frontend (client).

Currently, there are no 3-dimensional astronomical data

visualization applications which do this that are widely

available to the public. In this paper, using our application,

we explore various techniques and features which could

potentially be included in such future applications, and

discuss the benefits, drawbacks, and opportunities

associated with each.

CCS CONCEPTS

• Computing methodologies ~ Computer graphics

• Human-centered computing ~ Visualization

• Human-centered computing ~ Interaction design

1 Introduction

The development of radio telescopes, such as the Square

Kilometer Array [18] currently under construction in South

Africa, has presented new opportunities in the field of radio

astronomy. The quantity and quality of the data collected

by these telescopes requires novel techniques for analysis

and interpretation in order to extract the maximum amount

of useful information from it. This data comes in the form

of data “cubes”, meaning it is three dimensional (two

positional and one spectral) and can be visualized as a stack

of 2D images captured along the radiofrequency

spectrum [5]. Analysis of astronomical data at different

frequencies allows astronomers to detect certain

astronomical phenomena which would otherwise be

undetectable. For example, neutral hydrogen (H1) surveys

at the 21-cm sub infra-red emission-line can be used to

infer important information such as the star formation rate

[13] and cold gas accretion [16] of galaxies.

It has recently been pointed out that there is a lack of an

application that can deal with large astronomical data cubes

in more than two dimensions [5][11]. In this paper, what is

meant by a “large” data cube or data set is one which has a

memory size which makes it too large for it to be stored or

rendered practically on most personal computers (PCs), i.e.

approximately greater than 100 GBs. Currently, there are

only a few tools which provide 3D rendering for

astronomical data and only for a small subset of a larger

data cube (see Section 4), and these applications require

that the data be stored and rendered on the user’s PC with

the users graphical processing unit (GPU). Other

applications (see Section 4.3 CARTA) provide server-side

rendering and data storage, however only allow the user to

step through the data cube viewing one rendered 2D image

at a time until the desired frequency or collection of

frequencies is found. This process is inefficient since it

requires the user to perform many interactions with the data

and attempt to construct a mental 3D visualization from a

collection of 2D images. Although this technique is useful

in certain cases, the addition of a 3D representation of this

data using volumetric rendering along with tools which

would provide interaction and flexibility for cubes larger

than what can be stored on a personal computer (PC),

would be of great use to the next and current generation of

radio astronomers [5].

2. Requirement Analysis and Design

Throughout the course of this project, we have been

working alongside the lead engineer - Dr. Angus Comrie -

of CARTA (see Section 4.3). The developers of CARTA

have particular interest in this research area, as they are

considering integrating a feature which would allow for the

visualization of and interaction with large data cubes in 3D

in a future release of their application. This could be

considered the primary motive behind this project, and

working alongside him, we have the following aims:

Aim: To determine whether it is possible to develop an

astronomical data visualization application which allows

the user to interact with and visualize data cubes which are

too large to be stored or rendered on a single PC in an

intuitive, lag-free manner. Also, to determine what

architectural and design decisions should be made for such

an application.

Hypothesis: Development of such an application is

possible. It would have to be built with a client-server

architecture where the computationally intensive tasks are

handled by the server, and the data exploration and

interaction are handled by the client. The server would

handle tasks such as rendering of high-resolution images of

volumetric renders and the generation of level-of-detail

(LOD) down-samples of the full cube. The client would be

responsible for receiving input from the user, rendering the

LOD model and displaying the high-resolution renders. A

robust communication protocol would be required between

the client and the server and allow the server - upon

requests from the client - to stream high quality renders of

what the user is currently viewing of the LOD model. By

employing such a hybrid-rendering technique, such an

application would find a balance between interactive

performance and image quality of the visualizations.

The resulting application should be developed with data

structures and algorithms which are as efficient and

scalable as possible, which would be required in future

real-world and full-scale implementations of our

application.

3. Background

This section presents background information on some of

the techniques adopted and explored in our application.

3.1 Volumetric Rendering

Volumetric rendering is a technique used in computer

graphics to visualize a 3D discretely sampled data set on a

2D display. The data usually comes in the form of a “cube”

or stack of 2D images of the same dimensions (i.e. the same

amount of pixels), with each image on the stack usually

acquired in a regular pattern (e.g. one every unit of time or

distance). Previous approaches to visualizing 3D data

utilize computer graphics techniques which attempt to

reduce the volume array to a set of 2D geometric primitives

(usually triangles) linked together in a mesh in order to

approximate the surfaces of objects contained in the data.

This technique, known as texture mapping (or texture-

based rendering) [6], is inefficient when rendering objects

which have a branching structure, especially when there is

a high density of branching relative to the overall size of

the object. This is because only the surfaces of objects are

rendered when using this technique and branching

structures rapidly increase the surface area of objects,

making them more computationally intensive to render.

Animators and computer game developers have had to

circumnavigate this problem either by using various

techniques to reduce the complexity of the object (e.g.

multi-resolution rendering [15]) or exclude them

altogether. Thus, texture-based rendering is undesirable

when high detail is required or branching objects are being

rendered.

Texture-based rendering also proves inadequate when

users require the insides of objects to be rendered, since this

technique only renders the surfaces of objects and excludes

all detail found within. This is most notably seen in

scientific visualization when users wish to interact with,

move inside, cut or disassemble objects with high

precision. For example, a medical professional may wish to

visualize the data acquired from an MRI scan in a 3D

interactive environment to view the inside of a patient’s

body [20]. Volumetric rendering aims to solve these

problems by generating images of 3D data without

explicitly extracting geometric surfaces from the data [12].

This technique directly renders each volumetric element

(or voxel), which can be thought of as a 3D pixel, where

the values associated with each voxel are calculated by

sampling the immediate area surrounding it. Each voxel

has an opacity and colour value, which is usually calculated

by a RGBA transfer function. This function maps a

numerical value to a voxel’s colour and opacity.

3.2 Volume Ray Casting

Volume ray casting, also referred to as ray marching, is the

technique utilized by volumetric rendering whereby a 2D

image is created from a 3D dataset. In this technique, for

each pixel of the final image, a viewing ray is cast through

the volume. Along its path, samples of opacity and the

colour of voxels are recorded and accumulated at equal

intervals. In certain cases, the sampling point might occur

between voxels, in which case it is necessary to interpolate

values from the surrounding voxels. After all sampling

points have been shaded (i.e. coloured and lit), they are

composited along the viewing ray, and the resulting opacity

and colour value assigned to the corresponding pixel. This

process is completed for each pixel on the screen until the

final image is produced.

Due to the parallel nature of this technique, since each

viewing ray can be computed in parallel, modern GPUs are

best suited to the task of volumetric rendering. Scalability

into the future is also resolved in this way as more GPUs

can simply be added to a cluster as the size of the data cubes

increase.

4 Related Work

Many astronomical data visualization tools exist, however

in this paper only those which are open source, publicly

available and continuously maintained by developers are

discussed. This review is required in order to avoid

duplication of software and features which have already

been developed and are in use.

4.1 KARMA

Karma [4] is a general-purpose programmer's toolkit and is

made up of KarmaLib, a structured library and application

programming interface (API), and several modules or

applications to perform specific tasks. Karma is a

serverless desktop application. Hence, all input data cubes

must be stored on the host machine. This will often prevent

users from being able to visualize large data cubes when

running the application on their workstations due to lack of

storage capacity. Karma’s rendering is done by the CPU as

opposed to a graphical processing unit (GPU). This,

together with the lack of memory capacity of most

commodity PCs, imposes significant constraints on the size

and resolution of data which can be visualized using

Karma.

There is also the requirement that data cubes used for

volumetric rendering in Karma must have bit values in the

range of -127 to 127. This is a severe limitation for

astronomers as images often contain very bright sources

which would be stored as bit values higher than 127. For

these data cubes to be rendered, they would have to be

scaled to fit into this range which would result in a

significant loss of information.

The main visualization features supported by the library

include:

• Volume rendering of data cubes (see Section 3).

• Play movies of data cubes - allowing the user to

step through frames of a data cube. E.g., a cube

where each step in the movie corresponds to a

different frequency.

• Inspecting multiple images and cubes at the same

time - allowing the user to compare several

datasets at the same time and apply different

display settings to each.

• Slice a cube - used to display three orthogonal

slices through the cube where each slice is along

one of the principle planes (X, Y and Z).

• Superimposing images.

• Interactive position-velocity slices - allowing users

to use a two-dimensional image to define a slice

through a three-dimensional data cube.

• Interactive co-ordinate placement - allowing users

to quickly place a co-ordinate system onto images

which do not have one.

• Rectangular to polar gridding of images - which

allows the user to easily alternate the co-ordinate

grid between polar and rectangular.

Figure 1: The user interfaces (UI) of the applications discussed in

Related Works. Top Left: The UI of SlicerAstro. Top Right: The UI

of SAOImage DS9. Bottom Left: The UI of CARTA with labels of

widgets superimposed. Bottom Right: The UI of Karma displaying

2D rendered image superimposed with a contour lines for intensity

values.

4.2 SAOImage DS9

SAOIMage DS9 [8] is another widely used astronomical

data imaging and visualization application. As with Karma,

is a desktop application and all rendering is done on the

client’s CPU. Hence it imposes similar constraints on the

cube size and resolution depending on the user’s CPU(s)

performance.

It provides access to web-based archive servers such as the

Mikulski Archive for Space Telescopes (MAST), SkyView

and many more through FTP and HTTP. All data cubes

retrieved in this manner are required to be entirely copied

into the memory of the user’s machine before rendering can

take place.

DS9 provides support for volumetric rendering. However,

as already mentioned, it requires the rendering to be done

on the workstation’s CPU and provides very limited

support for the editing of the opacity and colour transfer

functions. Another notable feature supported by DS9 is

inter-process communication using the Simple Application

Messaging Protocol (SAMP) [19]. This is a standard for the

exchange of data between participating client applications

and is used by many applications dealing with astronomical

data. Future applications should consider implementing

SAMP such that the data produced by them can be inputted

into other astronomical data application and vice versa.

4.3 CARTA

The Cube Analysis and Rendering Tool for Astronomy

(CARTA) [1] is a web application used for the analysis and

visualization of astronomical data. Its mission is to provide

usability and scalability into the future as the size and detail

of radio images increases as more advanced radio

telescopes are built. It plans to achieve this through

exploiting modern web technologies, computing

parallelization and modern GPUs.

CARTA adopts a client-server. It does this to allow users

to visualize data cubes too large to be stored on PCs. It

currently does not support volumetric rendering and only

allows visualization of 3D data cubes through 2D rendered

slices. However, CARTA supports several features which

are noteworthy:

• Tiled rendering – the separation of a graphical

image into a regular grid so that each section of the

grid (or tile) can be rendered independently of the

others and at the same time (in parallel).

• Cursor information – displaying information about

a pixel where the cursor is positioned at the top of

the screen.

• Region of Interest (ROI) – allowing the user to

draw or select a specific region in the image which

can then be separated for further analysis.

4.4 SlicerAstro (plugin for 3DSlicer)

3DSlicer [10] is an application for the analysis and

visualization of medical images. It is supported by multiple

operating systems including Windows, MacOSX and

Linux, supports both CPU and GPU rendering, supports 3D

volumetric rendering and is extensible to allow the

development and use of plugin applications and algorithms.

SlicerAstro [14] is one such plugin, which includes several

capabilities that are particular to astronomical applications,

such as:

• Support for the Flexible Image Transport System

(FITS) file format, which is the most widely used

file format in astronomy.

• Astronomical co-ordinate systems.

• Interactive 3-D modeling (rotation, zoom, etc.).

• Coupled 1-D/2-D/3-D visualization with linked

views.

• Support for the SAMP protocol.

• Generation of flux density profiles and histograms

of the voxel intensities.

3DSlicer (and hence SlicerAstro) is a desktop application,

and all rendering is done using the user’s CPU and GPU.

Punzo et al. reported that SlicerAstro provides interactive

performance when rendering data-cubes of dimensions up

to 107 (≈40mb) voxels and very fast performance (<3.5

sec) for larger ones up to 108 voxels (≈400mb) [14].

SlicerAstro also makes use of a several smoothing

functions, most notably of which is the intensity-driven

gradient filter. This filter preserves the detailed structure of

the signal while smoothing the faint part of it, improving

visualization and feature detection. An example of this

shown in top left of Figure 1.

5 System Design and Implementation

This section outlines the overall architecture, programming

languages, external libraries, and functionality of the

application. The application was chosen to be developed

with a client-server architecture where the rendering is

done server side. The reasons for this are related to the

difficulty in rendering and storing large data cubes on a PC,

and the transferal of them over a network. For example, the

typical survey conducted by MeerKAT will have 8K × 8K

bits spatial resolution and up to 32K spectral resolution [7],

which would give a typical size of 8K × 8K × 32K × 4

(assuming 32-bit floats) ≈ 8 TB at full spectral and spatial

resolution.

Cleary this is too large to be stored on most PCs hard drives

which usually have a capacity of less than or equal to 1 TB.

A client-server architecture would allow these large data

cubes to be stored in one location only and have clients

accessing the data cubes remotely. Many PCs do not have

access to a GPU, and those that do often do not have the

processing power to render cubes of the aforementioned

size. Rendering the data cubes on a server which had access

to powerful GPUs or clusters of them, would allow much

larger cubes to be visualized on PCs than would otherwise

be possible. The final reason why a client-server

architecture is used, is due to the amount of time it would

take to transfer such large cubes over a network. This

would be required if the rendering where to be done locally

as opposed to remotely, as the entire data cube would have

to be copied into memory of the local workstation. For

example, a 100 Gb data cube on a 1mb/s download speed

would take 27.8 hours to download and alongside the time

constraint, may have significant financial implications if

paying for the network data.

This paper mainly focuses on the server’s design and

implementation since another member of the project team

was responsible for the frontend. However, the frontend

and communication protocol shall be discussed to the

extent that it is necessary in order that specific design

decisions about the server makes sense in the full context

of the application. A general overview of how the

application works follows:

The server was developed in C++, the frontend in

TypeScript and making significant use of React.js for the

user interface and UI components, and Google’s gRPC as

the communications protocol between the two. The

application takes a hybrid-rendering approach where the

frontend renders and provides interaction and exploration

with a LOD model in a web browser and continually sends

different types of requests to the server depending on input

from the user. The server then handles the computationally

intensive tasks such as rendering of high-resolution images,

or LOD model generation, which are then streamed to the

user and then used to update the display. The user is able to

specify the total memory size of the LOD model being

rendered in their browser and the server is responsible for

meeting this requirement when generating LOD models.

The updating of the display with high-resolution renders

and new LOD models is intended to be as seamless as

possible. This approach has been taken to provide a balance

between responsive interaction and visualization quality.

Figure 2 shows a component diagram of Voxualize. It

should be referred to throughout this section such that each

component discussed can be seen in the full context of the

application.

5.1 Google’s Remote Procedure Calls (gRPC)

gRPC was chosen as the communication protocol between

the TypeScript frontend and C++ backend. gRPC is an

open-source remote procedure call system initially

developed at Google in 2015. It uses protocol buffers as the

interface description language, HTTP/2 for transport, and

provides the following features relevant to our application:

bidirectional streaming, flow control, remote procedure

call (RPC) cancellations and timeouts. gRPC’s simple

interface description language allows for rapid

development as requests from the frontend to the backend

and the streaming of data from the backend to the frontend

are implemented from the perspective of the developer as

though they are mere function calls which are language

independent. This prevents the manual construction of

HTTP requests or the setup of web sockets for data

streaming. Kiraly et al. reported that gRPC produced the

best performance when both serializing data and streaming

it when compared to other RPC systems, and that

specifically its C++ implementation proved faster when

compared to other languages [17].

Figure 3 shows a sequence diagram of the communication

exchanges between the client and the server. The RPCs

usually follow the format of a request from the client which

contains information required by the server to generate the

data object which is then streamed back to the client in the

response. A description of the main RPCs follows:

• ListFiles: The request is empty, as this is the

initializing communication between the client and

the server. The response is the list of data files

currently stored on the server, one of which can

then be selected by the user.

Figure 2: A component diagram of Voxualize, giving an overview of

the architecture and the usages of 3rd party libraries.

• GetFile: This allows the client to specify which file

they wish to visualize.

• GetHQRender: When the user stops interacting

with the LOD model for a small period of time

(≈200ms), this RPC is made containing

information about the state of the render on the

frontend, such as the cameras position, focal point,

and transfer function settings, and the server then

generates the corresponding high-resolution image

and streams it to the frontend, which then updates

the display.

• GetROILODModel: This RPC is made when the

cropping planes have been adjusted on the

frontend, or a new memory size of the LOD model

has been requested. The server then generates a

new LOD model based on the request and streams

it to the frontend, where it is then displayed.

5.1 Backend (server)

The future applications of which Voxualize is intended to

serve as a proof of concept for, will be required to store and

render extremely large quantities of data as efficiently as

possible. When working with such large data sets, it is

imperative that memory management is prioritized and that

no unnecessary memory copies are executed. In order to

achieve this, C++ was chosen as the server’s language of

implementation since it provides memory management, is

computationally efficient and is widely utilized in

computer graphics applications, scientific or otherwise, and

in web applications which require efficient servers. This

would make future integration with other astronomical

visualization applications seamless and would increase the

impact that out project may have on the field. As discussed

in the Introduction, one of the primary motives for this

project was to build a proof of concept of an application or

feature which could be integrated into the CARTA

platform in the future. This further motivates our choice of

languages and frameworks, as they are utilized in the

CARTA platform (see Section 4.3).

The server is responsible for storing the data files which are

to be visualized, handling requests from the client,

generating LOD models and high-resolution renders of the

full model, and streaming these data objects to the client.

At the time of the writing of this paper, Voxualize only

supports raw floats as input. It was planned at the beginning

of the project that support for the Flexible Image Transport

Standard (FITS) file format would be implemented,

however, due to time constraints these plans were not

materialized. FITS is a format widely used in astronomy

and would be essential in any astronomical visualization

software, however it is not essential to the aims of our

project (see Aims in Section 2).

5.1.1 LOD Model Generation

How the LOD models are generated depends on the

parameters passed in the request from the client. After a file

is selected, when the “Render” button is selected, the LOD

model corresponding to the entire cube is generated. A

slider in the bottom left of the screen is used to select the

target memory size of the LOD model, which will be

stored, rendered and interacted with in the client’s browser.

The values range from 1mb to 100mb and the value can be

adjusted to meet the memory and graphical constraints of

the client’s PC such that the visualization maintains

interactive performance. The voxel values of the LOD

model are calculated by sampling the corresponding area

around the voxel in the full cube, with the magnitude of the

area sampled directly proportional to the reduction factor

from the full model to the LOD model. To illustrate this

point by example, a target LOD size of 5x5x5 with a full

cube of 10x10x10 voxels, would have each voxel

calculated by sampling and area of 2x2x2 voxels from the

full cube. There were two functions used to aggregate the

voxels from the sampled area: the mean and the maximum

value. The maximum is the default setting as astronomical

surveys tend to produce cubes which are empty for the most

part and have small areas of very “high” or “bright” voxels

dispersed around the cube. If a mean sapling function is

used in these cases, the bright voxels will be aggregated

with low values surrounding it, and a significant amount of

information will be lost.

Figure 3: A sequence diagram showing the main RPCs

between the client and the server.

The user is able to specify the cropping planes of the data

cube (see Section 5.2). After the cropping planes have been

changed, the user can then request a new LOD model. This

request will then sample a new LOD model corresponding

to the volume resulting from the cropping planes settings

and will have a memory size equal to the value set on the

slider at the time of the request. This allows a user to zoom

into smaller and smaller regions, with each new request

rendering the selected LOD model in higher and higher

resolution, whilst sticking to the memory constraints of the

client’s PC.

5.1.2 Visualization Toolkit (VTK)

VTK [21] is open source software for manipulating and

displaying scientific data. It is platform agnostic and is

usable in C++ and TypeScript. It was the library of choice

for the rendering of the data and the interaction with it –

through VTK.js in the browser. It is used in many

astronomical visualization applications. The server makes

use of VTK’s compatibility with EGL in order to perform

offscreen rendering of high-resolution images (see Section

5.1.3). EGL [9] is an interface between Khronos rendering

APIs (such as OpenGL [22]) and the underlying native

platform windowing system. The acronym EGL is an

initialism, which starting from EGL version 1.2 refers to

Khronos Native Platform Graphics Interface. In our

context, it allows us to performing rendering where the

resulting image is copied to a back (offscreen) buffer rather

than a front (onscreen) buffer. This is essential as it

emulates a real-world implementation of our application

where the server would most likely not be running an X

server.

5.1.3 High-resolution Images

Whenever the user stops interacting with the LOD model

on the frontend, selects a new RGBA function value with

the slider or changes the cropping planes, a request for a

high-resolution image of what the user is currently viewing

is sent to the backend. By this time, the server will already

have an EGL render of the full data cube set up but paused

(the setup of the EGL render happens when the user selects

a file). Whenever the server receives such a request, it

retrieves the necessary information from the request sent

by the client, such as the camera position, focal point,

distance from the focal point, cropping planes coordinates

and RGBA values. Using this information, it updates the

necessary VTK objects with the new values, starts the

render, captures the resulting image data, stops the render

and streams the resulting image after encoding it to the

client.

5.1.4 Encoding and compression

Zfp [23] is a floating-point compression library which has

a reported CPU throughput of 2 GB/s per CPU core and

150 GB/s parallel throughput on an NVIDIA Volta GPU.

It is reported to provide 1.5-4 times data reduction for

lossless compression, and up to 100 times data reduction

when using lossy compression. At the time of writing, there

exists a working implementation of the server where all

LOD models are compressed using zfp prior to them being

streamed to the client. However, a zfp decompressor on the

frontend has not yet been implemented. Having the LOD

models compressed using zfp prior to streaming greatly

reduces the strain on the network and may be desirable for

user’s with low bandwidth internet access.

The high-resolution images discussed in Section 5.1.3 are

encoded using FFmpeg [3]. FFmpeg is a free and open-

source software project consisting of a large suite of

libraries and programs for handling video, audio, and other

multimedia files and streams. The main library used is

libavcodec which is an audio and video codec library used

for encoding and decoding video and audio data. FFMPEG

executes its encoding on the CPU as opposed to the GPU

and hence is not as scalable as other solutions such as

Nvidia’s NVENC, which was initially intended to be

implemented in the application, however, due to specific

hardware constraints – the PC being used for development

had a GPU which is incompatible with NVENC – we were

unable to include GPU accelerated encoding. However, it

is unlikely that this would lead to a noticeable decrease in

performance, as the resulting high-resolution image would

usually be less than 1mb in size, and the time taken to

encode an image of such small memory size on the GPU vs

CPU would be negligible (in terms of user experience).

This is due to the shorter time taken to encode the image on

the GPU being offset by the time it would take to copy the

Figure 4. Left: A LOD model. Right: A high-resolution image

corresponding to the view of the LOD model on the left. It has been

rendered on the server, streamed to the client and displayed over

the model on the left to the user. When the user interacts, the view

will return to the LOD model on the left.

image to the GPU’s buffer. When encoding the image with

FFMPEG, this copy is avoided.

5.2 Frontend (client)

(In this section, the letters A – I refer to the highlighted UI

components found in Figure 5)

The frontend is responsible for the UI and data exploration.

It is written in TypeScript and relies on React for the UI

components. The title bar contains a drop-down menu (A)

which lists the files on the server and allows the user to

select one. After one is selected the user can then click the

“Render” button (B). When this is done, a GetFile RPC is

executed (see Section 5.1). This is when the server

generates the LOD model corresponding to the full cube,

streams it back to the client and sets up the EGL render of

the full cube. The screenshot in Figure 5 is taken just after

these actions are taken.

The user can then interact with the cube in the following

ways:

• Click and drag – This cause the cube to rotate.

• Zoom in/out – The user can zoom in or out using a

mouse scroller.

The user can also:

• Switch between the mean and the maximum

sampling methods (C) that the server will use to

generate the LOD models (see Section 5.1.1).

• Change the cropping planes using the sliders (E) or

graphically using the corners of the box (D).

• Change the RGB transfer function values using

sliders (F).

• Change the memory size of the LOD model (G).

• Click the “Request new model” button (H), which

will take into account the cropping planes currently

set and the target memory size and request a new

LOD model based on those values.

• Reset the model being displayed to the most

recently used LOD model corresponding to the full

cube (I).

The updating of the display with the high-resolution image

is intended to be as seamless as possible. The user is still

able to interact with the cube while the request is being

processed, and the display will only be updated if the

image being received corresponds to the current view of

the user.

6 Experimental Design

Although this project was more focused on the design and

implementation of an application and the user experience

associated with it, a few performance tests were conducted

on several key functions on the server. A comparison of the

time taken to execute them may allow us to extrapolate

useful information about the limitations of such a real-

world implementation of our application, and the hardware

requirements as the size of the data cubes increases. It

would also likely reveal any functions which are

bottlenecks of the system, and for which alternative

solutions or implementations would need to be explored.

The PC used to conduct the experiments had an Intel Core

i7 CPU, and a NVIDIA GeForce MX250 GPU. Three

different file sizes were used as input to these various

functions (42 mb, 195 mb and 595 mb). The time taken to

execute them was measured using the C++ utilities library

std::chrono::high_resolution_clock. Each function was

executed 20 times for each input and the average execution

time was recorded. The following functions were tested:

the time to generate a 10 mb LOD model using the mean

and max sampling method (see Figure 6), the time taken to

render and capture a full resolution image using VTK (see

Figure 7) and the time taken to encode this resulting image

using FFmpeg. “Full resolution” in this context means a

volumetric render where the full data cube is being

rendered. The actual resolution of the resulting image is

automatically set to the window size of the display on the

frontend. In the case of these tests, the window size (and

image resolution) was 1385x500 pixels.

7 Results and Discussion

The application outlined in Section 5 was implemented

successfully. The user is able to interact with LOD models

in a web browser, while high-resolution images of what the

user is viewing continually update the display whenever

they stop interacting for a short period of time. The

transition between the view of the LOD model and the

high-resolution image is seamless, and the application is,

Figure 5: The UI of Voxualize. This screenshot was taken just after

a file was selected and the “Render” button pressed.

for the most part, bug-free and intuitive to use. The sliders

for the RGB transfer function are responsive, and the high-

resolution images are generated with the same RGB

transfer function values as those on the frontend. Similarly,

the cropping planes sliders effect the visualization

immediately and any changes are reflected in the high-

resolution images being generated on the server.

7.1 Experiment Results

Figure 6: The time taken to generate a 10 mb LOD model from data

cubes of 3 different sizes. Both the “Mean” and “Max” sampling

methods were used.

The results of the experiments discussed in Section 6 are

presented above. Figure 6 shows the time taken to generate

a 10 mb LOD model from input data cubes of various sizes.

The Mean sampling method appeared to generate LOD

models faster than the Max, given the same input data cube

and target LOD model memory size. This is most likely due

to the Max sampling method requiring a boolean if-

statement check for every value in the input data cube in

order to determine the maximum voxel value in each sub-

volume. It is important to note that these sampling

algorithms were implemented sequentially, even though

they are both fully parallelizable. There were several

reasons why this was done. The generation of the LOD

model on the server is unlikely to occur often while a user

is visualizing and interacting with a data cube. LOD models

are only generated when the user starts the visualization or

they request a new LOD model after changing the cropping

planes or target memory size. After the LOD model is

generated and streamed to the client, the user will most

likely spend the majority of the time interacting with the

same LOD model and viewing the high-resolution images

which continually update the display.

An alternative implementation would have been to utilize

hardware accelerated scheduling through executing the

algorithms in parallel on the GPU. The main problem with

this solution is that it would require a copy of the full data

cube into the GPUs buffer, which would likely offset any

reduction in execution time as a result of the parallelized

execution on the GPU. A more practical solution would be

to designate portions of the data cube to several threads

which are executed on the CPU. This would prevent

unnecessary copies and likely lead to a significant decrease

in execution time for larger cubes. As seen in Figure 6, the

time to generate the LOD model from a data cube of 565

mb was almost 8 seconds when using the Max sampling

method. This already is a borderline unacceptable amount

of time, and a future application would ideally be able to

handle data cubes much larger than this. Due to the time

constraints of the project, we were unable to implement this

feature, but note that it is essential for future full-scale

applications which wish to support cubes larger than 500

mb.

Figure 7: The time taken to render a requested high-resolution

image using VTK, and copy it from the GPUs buffer into main

memory.

Figure 7 shows the time taken for the server to render and

capture high-resolution images using VTK. As mentioned

in Section 6, the full data cubes were volumetrically

rendered by VTK, and the resulting images of 1385x500

pixels were captured. The server took on average two

seconds to render a data cube of 565 mb, which had access

to a single GPU. We believe this to be an acceptable

amount of time considering the hardware constraints. A

server would be able to improve upon this solution by

simply installing more powerful GPUs, or by combining

several into a cluster.

The time taken to encode the images is not included in a

chart since it took the same amount of time - 0.055 seconds

- regardless of the input size of the data cube. This was to

be expected, as the image captured by VTK and inputted

into the FFmpeg encoding was always the same size. Since

Voxualize is intended to serve as a proof of concept for a

web application, it is unlikely that hardware accelerated

encoding of these images is necessary to implement, as the

image size will be set to match the window size of the

client’s display. Assuming the web application was being

accessed on a PC or mobile device, it is unlikely that the

target image would be much greater than 1385x500 pixels.

However, in order to maximize performance and minimize

the latency of the GetHQRender rpc’s (see Section 5.1),

future implementation may wish to explore the possibility

of implementing hardware accelerated encoding.

7.2 Large Cube Compatibility

One design decision which may lead to issues when

attempting to scale our application is the rendering of the

LOD model corresponding to the full cube after a file is

selected and the “Render” button is pressed. If the user had

very large cubes to choose from, which is what is intended

for future implementations, the generation of the

corresponding LOD models would likely require that they

be down sampled to such an extent that the resulting

visualization would become meaningless. In such cases, a

mechanism is required in order to prevent this from

happening when the visualization is initialized. One

solution could be to allow the server to select a default

cropping region of the cube and begin the visualization

with that. The application could then allow users to switch

from one region to an adjacent one or expand and edit the

existing cropping regions to “move through” the full cube.

Additional meta-information could be provided to the user,

allowing them to determine which segment of the cube they

are seeing. Or the application could provide the user with

meta-information first and allow them to select a cropping

region before the visualization has even begun.

If such an application did not implement a parallel version

of the LOD model generation algorithms discussed in

Section 5.1.1, it would be desirable to minimize execution

of these algorithms with large data cubes as input. This

further motivates an improvement on the design decision to

generate the LOD model corresponding to the full data

cube when the visualization is initialized.

8 Limitations

The current implementation of Voxualize contains two key

limitation which we were unable to resolve due to time

constraints. When the high-resolution image updates the

display, it occasionally appears marginally lower than the

prior view of the LOD model. This offset is minor, and on

occasions is unnoticeable. We were unable to determine

what causes this discrepancy but are certain it would be

straight forward to resolve and necessary to do so.

The second limitation is a feature which we were unable to

implement also due to time constraints. It is the absence of

the ability for the user to zoom out from one cropping

region to a larger one. Currently, Voxualize only allows the

user to generate a new LOD model from a smaller cropping

region, or to reset the LOD model to the cropping region of

the full cube rather than a custom cropping region. This

feature is of course essential to any real-world

implementation of our application, however it is not

essential in achieving the research aims of this project.

9 Conclusions and Future Work

Our proof of concept application, Voxualize, allows users

to interact with 3-dimensional astronomical data cubes in

an intuitive and lag-free manner which would otherwise be

too large to be stored or rendered on a commodity PC or

transported over a local network in an acceptable amount

of time. It achieves this through a hybrid-rendering

technique vastly unexplored in the widely available 3-

dimensional astronomical data visualization applications,

by employing a client-server architecture where the

computationally expensive tasks are handled by the server

and the data exploration and interaction are handled by the

client. We conclude that future astronomical visualization

applications, which wish to allow the visualization of and

interaction with the large astronomical data cubes currently

being produced by modern radio astronomy telescopes in

3D, should employ a client-server architecture and a

similar hybrid-rendering technique.

There are numerous avenues that can be taken for future

work. In our opinion, the next logical step would be to build

upon our application and explore alternative visualization

techniques while adopting a client-server architecture and

our hybrid-rendering approach. The findings of this

research could be used to guide future applications’

development. A number of features which we were hoping

to include but were unable to due to time constraints were:

compatibility with FITS file format, blinking between

images and transfer function values, hardware accelerated

encoding of images on the GPU, and tiled rendering both

of the high-resolution images and volumetric tiled

rendering of the LOD models.

10 Acknowledgements

We would like to thank Prof. Rob Simmonds for being our

supervisor and guiding us throughout the project, as well as

Angus Comrie, the lead developer of CARTA, who helped

us tremendously with day to day questions when

developing the software and also linking us to educational

material about the topics that we were covering.

REFERENCES

[1] Comrie, A., Wang, K., Ford, P., Moraghan, A., Hsu, S.,

Pińska, A., Chiang, C., Jan, H., Simmonds, R., Chang, T., Lin,

M., CARTA: The Cube Analysis and Rendering Tool for

Astronomy, (Dec 2018). Retrieved May 10, 2020 from

https://doi.org/10.5281/zenodo.3377984

[2] Drebin, R.A., Carpenter, L., and Hanrahan, P., Volume

rendering. In Proceedings of the 15th annual conference on

Computer graphics and interactive techniques (SIGGRAPH

’88) 22, 4 (Aug 1988), pp. 65-74.

[3] FFmpeg Developers. (2016). ffmpeg tool (Version be1d324)

[Software]. Available from http://ffmpeg.org/

[4] Gooch, R.E., Jacoby, G.H., And Barnes, J., Karma: a

Visualisation Test-Bed. Astronomical Data Analysis Software

and Systems V 101 (1996), pp. 80-83.

[5] Hassan, A., and Fluke, C. J., Scientific Visualization in

Astronomy: Towards the Petascale Astronomy Era.

Publications of the Astronomical Society of Australia 28

(2011), pp. 150-170.

[6] Heckbert, P.S., Survey of Texture Mapping. IEEE Computer

Graphics and Applications 6, 11 (Nov 1986), pp. 56-67.

[7] Jonas, J.L. et al., The MeerKAT Radio Telescope.

Proceedings of Science Volume 277 - MeerKAT Science: On

the Pathway to the SKA (MeerKAT2016) (Feb 2018)

[8] Joye, W. A., Gabriel, C., Arviset, C., and Ponz, D. et al.,

Astronomical Data Analysis Software and Systems XV,

Astronomical Society of the Pacific Conference Series 351

(July 2006), p. 574.

[9] Khronos Group: EGL Overview. Retrieved from:

https://www.khronos.org/egl

[10] Kikinis R., Pieper S.D., and Vosburgh K., 3D Slicer: a

platform for subject-specific image analysis, visualization,

and clinical support. Intraoperative Imaging Image-Guided

Therapy 3, 19 (2014), pp.277–289.

[11] Koribalski, B. S., Overview on Spectral Line Source Finding

and Visualisation. Publications of the Astronomical Society of

Australia 29 (2012), pp. 359-370.

[12] Levoy, M. Display of Surfaces from Volume Data. IEEE

Computer Graphics & Applications 8, 2 (1988), pp. 29–37.

[13] M. Schmidt. The Rate of Star Formation. The Astrophysical

Journal 129 (March 1959), pp. 243.

[14] Punzo, D., Van Der Hulsta, J.M., Roerdinkb, J.B.T.M.,

Fillion-Robinc, J.C., and Yude, L., SlicerAstro: A 3-D

interactive visual analytics tool for HI data, Astronomy and

Computing 19 (April 2007), pp. 45-59.

[15] Ribelles, J., López, A., Belmonte, O., Remolar, I., and Chover,

M. Multiresolution Modeling of Arbitrary Polygonal

Surfaces: A Characterization, Computers & Graphics 26, 3

(2002), pp. 449-462.

[16] SANCISI, R., FRATERNALI, F., OOSTERLOO, T., AND

VAN DER HULST, T. Cold gas accretion in galaxies.

Astronomy and Astrophysics Review 15, 3 (2008), pp. 189-

223.

[17] Sandor, K., and Szekely, S. Analysing RPC and Testing the

Performance of Solutions, Informatica 42 (Dec 2018), p.

555+.

[18] Schaubert, D.H, Boryssenko, A.O. Van Ardenne, A., Bij De

Vaate, J.G., and Craeye, C. The square kilometer array (SKA)

antenna. IEEE International Symposium on Phased Array

Systems and Technology 2003 (Oct 2003), pp. 351-358.

[19] Taylor, M.B., Boch, T., and Taylor, J. Samp, the Simple

Application Messaging Protocol: Letting applications talk to

each other, Astronomy and Computing 11 (June 2015), pp. 81-

90.

[20] Valentino, D. J., Mazziotta, J. C., and Huang, H. K., Volume

rendering of multimodal images: application to MRI and PET

imaging of the human brain, in IEEE Transactions on Medical

Imaging 10, 4 (Dec 1991), pp. 554-562.

[21] VTK: Schroeder, W., Martin, K. and Lorensen, B., The

Visualization Toolkit (4th ed.), Kitware (2006), ISBN 978-1-

930934-19-1

[22] Woo, M., Neider, J., Davis, T., & Shreiner, D. OpenGL

programming guide: the official guide to learning OpenGL,

version 1.2. Addison-Wesley Longman Publishing Co., Inc.

(1999).

[23] ZFP: Lindstrom, P., Fixed-Rate Compressed Floating-Point

Arrays. IEEE Transactions on Visualization and Computer

Graphics 20, 12 (Dec 2014) pp. 2674-2683.

http://ffmpeg.org/
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-1-930934-19-1
http://en.wikipedia.org/wiki/Special:BookSources/978-1-930934-19-1
https://www.researchgate.net/publication/264417607_Fixed-Rate_Compressed_Floating-Point_Arrays
https://www.researchgate.net/publication/264417607_Fixed-Rate_Compressed_Floating-Point_Arrays

